Translocation of Shiga toxin across polarized intestinal cells in tissue culture.
نویسندگان
چکیده
Escherichia coli strains producing Shiga toxins (Stx) 1 and 2 colonize the lower gastrointestinal tract in humans and are associated with gastrointestinal and systemic diseases. Stx are detectable in the feces of infected patients, and it is likely that toxin passes from the intestinal tract lumen to underlying tissues. The objective of this study was to develop an in vitro model to study the passage of Stx across intact, polarized cell monolayers. Translocation of biologically active Stx was examined in four cell lines grown on polycarbonate filters. Stx1 translocated across intestinal cell monolayers (CaCo2A and T84 cells) in an energy-requiring and saturable manner, while the monolayers maintained a high level of electrical resistance. Stx1 had no effect on electrical resistance or inulin movement across these cell lines for at least 24 h. Induction of specific Stx receptors with sodium butyrate reduced the proportion of toxin translocated across CaCo2A monolayers but had no major effect on the movement of horseradish peroxidase or [3H]inulin. We have shown that biologically active Stx1 is capable of moving across intact polarized intestinal epithelial cells without apparent cellular disruption, probably via a transcellular pathway. The data also suggest that the presence of Stx receptors on the apical surface of intestinal epithelial cells may offer some protection against the absorption of luminal Stx1.
منابع مشابه
Shiga toxins 1 and 2 translocate differently across polarized intestinal epithelial cells.
Shiga toxin-producing Escherichia coli (STEC) is an important food-borne pathogen that causes hemolytic-uremic syndrome. Following ingestion, STEC cells colonize the intestine and produce Shiga toxins (Stx), which appear to translocate across the intestinal epithelium and subsequently reach sensitive endothelial cell beds. STEC cells produce one or both of two major toxins, Stx1 and Stx2. Stx2-...
متن کاملShiga toxin translocation across intestinal epithelial cells is enhanced by neutrophil transmigration.
Shiga toxin-producing E. coli (STEC) is a food-borne pathogen that causes serious illness, including hemolytic-uremic syndrome (HUS). STEC colonizes the lower intestine and produces Shiga toxins (Stxs). Stxs appear to translocate across intestinal epithelia and affect sensitive endothelial cell beds at various sites. We have previously shown that Stxs cross polarized intestinal epithelial cells...
متن کاملShiga toxin production and translocation during microaerobic human colonic infection with Shiga toxin-producing E. coli O157:H7 and O104:H4
Haemolytic uraemic syndrome caused by Shiga toxin-producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx-related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human co...
متن کاملRole of lipid rafts in Shiga toxin 1 interaction with the apical surface of Caco-2 cells.
Enterohemorrhagic Escherichia coli producing Shiga toxins 1 and/or 2 have become major foodborne pathogens. The specific binding of Shiga toxin 1 B-subunit to its receptor, a neutral glycolipid globotriaosylceramide Gb(3), on the apical surface of colonic epithelium followed by toxin entry into cells are the initial steps of the process, which can result in toxin transcytosis and systemic effec...
متن کاملTranslocation of verotoxin-1 across T84 monolayers: mechanism of bacterial toxin penetration of epithelium.
Verotoxin-producing Escherichia coli (VTEC) are pathogenic bacteria associated with diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Verotoxins (VTs) elaborated by these organisms produce cytopathic effects on a restricted number of cell types, including endothelial cells lining the microvasculature of the bowel and the kidney. Because human intestinal epithelial cells lack the glo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 64 8 شماره
صفحات -
تاریخ انتشار 1996